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enhanced human-robot interaction of wearable
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Abstract—The demand for upper limb exoskeletons has been
growing over the last couple of years. While there are many
approaches and viable products on the market, they rarely
use the newest Artificial Intelligence (AI) Algorithms, such as
Random Convolutional Kernel Transformation (ROCKET), to
perform EMG Classification tasks. The general problem lies
in the detection and implementation of EMG signals and then
transforming the signal in real-time to an upper limb exosuit.
During our research, we used the NinaPro dataset and included
measurements of our own EMG sensors. The dataset includes 52
different hand gestures, whereas the recorded data consists of 14
movements including the flexion of the upper arm. The proposed
neural network is based on the derived version of ROCKET
called Mini-ROCKET.
The network is designed to detect distinctive features in the upper
limb and forearm. The achieved accuracy is 91% for the NinaPro
4 dataset and 82% for the NinaPro 5 dataset. The classification
time of the EMG signal is 130ms. Comparison to other models
shows a superior outcome of the approach with the ROCKET
model. Implementing this network to existing exosuits can achieve
a more comfortable and active work experience. Rehabilitation
devices could benefit in general from this proposed approach.

Index Terms—Electromyography, time-series classification,
machine-learning, ROCKET

I. INTRODUCTION

In recent years, the convergence of electromyography
(EMG) technology and wearable robots has improved
significantly. Both in the field of human augmentation
and rehabilitation EMG technology has improved disease
diagnosis and recovery of patients [1]. Wearable robots can
be divided into active and passive actuation mechanisms.
Later, uses elastic components to activate the assistive force.
Elastic components can vary from mechanical springs to
elastic bands depending on their applications. Since they
depend on the elastic characteristics there is a limit on how
much external force can be assisted during dynamic tasks.
Furthermore, passive exosuits generate the resistive force
counteracting the trunk flexion. In theory, a passive exosuit
can assist even with heavy loads by increasing the device’s
stiffness. However, this can result in decreased mobility and
comfort for the user. Simple tasks requiring higher mobility
and flexibility can be tedious with a higher resistive force [2].
On the other hand, active exos use electrical motors to assist
the user. Sensors can be implemented to achieve a more
accurate power output. While this increases adaptability
during more dynamic tasks, active exosuits are limited in

other ways. Active exosuits are built with electrical motors,
sensors, and data transfer to assist tasks. These components
are prone to errors and need proper maintenance. The power
supply needs to be built in, adding additional complexity
(i.e., charging and weight) [3]. Even though exosuits have
limitations, they are already widely used and have shown
great purpose in the industry and medical field. Over the past
decade, people have improved and developed systems that
can help people in their daily activities [4], [5].

From the inspiration of previous works and literature,
this paper proposes a machine learning detection algorithm
for EMG signals to classify and assess the characteristics of
EMG signals. EMG is the measurable muscle activation in
milli voltage (mV). The EMG signal of movements can be
derived and classified to actuate an exosuit. This paper aims
to classify EMG signal with a Random Kernel Convolutional
Transform (ROCKET) [6] and the derived Mini-ROCKET
(Minimally RandOm Convolutional KErnel Transform) [7].
The proposed network architecture shows excellent promise
in time series classifications. The upside of ROCKET is
the low computation time of the network. This reduces the
classification process time of a movement, hence reducing the
latency between the muscle and the actuator. Additionally,
in the NinaPro database, EMG data was recorded from 10
subjects performing 14 different movements. The machine
learning algorithm was then trained to classify the recorded
dataset.

II. METHODOLOGY

A dataset is needed to implement a pattern recognition-
based myoelectric control system in the future. The NinaPro
dataset is a publicly available database aimed at improving
EMG signal classification and advancing research on
prosthetics for the forearm. In this work, the NinaPro datasets
4 and 5 were used to train a machine-learning algorithm for
classification [8]. The proposed method for signal extraction
of EMG signals is based on a neural network with a
Mini-ROCKET architecture. Additionally, the Mini-ROCKET
model is trained and tested on the recorded dataset.
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A. NinaPro Dataset

The NinaPro dataset is a publicly available resource
supporting research on advanced myoelectric hand prosthetics.
Since its first introduction in 2014, additional datasets with
different EMG sensors have been released, all with the aim
of making EMG data more freely and easily accessible.
The NinaPro dataset has multiple versions, each tailored
for specific research needs. The datasets include different
recording hardware and variations in experimental conditions,
including different gestures, postures, and muscle contraction
levels. However, classified movements stay mostly the same
throughout the various datasets [8].

In this experiment, the Ninapro datasets 4 and 5 were
used. EMG signals in the NinaPro datasets were recorded
using a standardized protocol to ensure consistency and
reliability across sessions and subjects. They have the
same 52 different movements, starting from standard finger
extensions to more sophisticated grasping and flexion
movements. The dataset’s difference lies in the hardware used
to record the EMG signal. The NinaPro 4 used 12 Cometa
electrodes, and the Nina Pro 5 relied on two Thalmic Myo
Armbands, adding up to 16 electrodes to measure the EMG
signals from ten subjects [8].
Subjects performed the movements while seated, with arms
resting on a table, to minimize movement artifacts. The
subjects had to follow a video displaying the movements
consecutively, repeating each movement 6 times. The raw
EMG signals underwent several preprocessing steps before
being converted to Matlab files. These steps typically include
filtering to remove noise, normalization to account for
inter-subject variability, and segmentation to isolate individual
movements. After the recordings, the signals were processed
and converted to Matlab files, which were publicly accessible
and downloaded from the NinaPro website. The dataset
includes variables such as restimulus, which indicate the
period of an active movement. Repetition, labeling the
repetition period of each movement. Besides the restimulus
and repetition variables, the dataset also includes detailed
metadata about the experimental setup, such as electrode
placement and signal acquisition parameters. Moreover,
characteristics such as age, gender, and height of the subjects
are also included. The variables are needed to later divide
the data into training and test sets to train and evaluate the
Mini-ROCKET model [8].

B. Collected Data

For the data collection phase of this study, we employed
the Noraxon USA Inc. telemyo DTS system, a sophisticated
surface electromyography (sEMG) recording system known
for its reliability and precision in capturing muscle activ-
ity data. The electrodes from this system were strategically
placed on the subjects’ forearms and upper arms to ensure
accurate measurements of muscle dynamics during various
hand movements. The subject pool consisted of ten healthy
volunteers thoroughly briefed on the study’s aims and pro-
cedures. Before data collection, each subject gave informed

consent. The electrodes were positioned over major muscle
groups: on the Biceps Brachii and Triceps Brachii at their peak
contraction points for upper arm recordings and around the
circumference of the upper forearm for capturing the complex
interactions of the approximately 20 muscles located there,
mirroring the electrode placement used in the NinaPro dataset
[?]. The following Figure 1 shows the acquisition setup with
the Noraxon system [9].

Fig. 1. Eight sEMG electrodes were placed in total on the arm. Two of which
are placed on the upper arm and the other six around the forearm. The white
batches in the picture are the electrodes capturing the signal, whereas the little
grey-blue boxes record the data and are used in the Noraxon system as the
reference electrode.

During the data collection sessions, subjects were instructed to
perform a series of 14 distinct hand movements, each repeated
six times to maximize data consistency and reliability. These
movements were demonstrated to the subjects via both video
displays and printed guides to ensure a clear understanding and
accurate performance of each gesture. The resultant dataset
provides a foundation for training and evaluating machine
learning models for precise hand movement classification with
the Noraxon system.

C. Random Convolutional Kernel Transformation

ROCKET (Random Convolutional Kernel Transform) is a
time series classification method that uses thousands of ran-
dom convolutional kernels to extract features. These kernels,
which vary in length, weight, dilation, and padding, are applied
to the input data to transform it into a high-dimensional feature
space. The feature extraction process involves two primary
outputs for each kernel: the maximum value and the proportion
of positive values (PPV) in the convolutional output. This
transformation effectively captures diverse patterns in time
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series data, leading to a robust feature set for classification
tasks. Consider a time series vector X(t) of length n, a
convolution kernel ω, and a bias vector b. The process of global
max pooling (GMP) can be defined as follows:

GMP = max
i

(X ∗ ω) (i) (1)

where the convolution operation ( (X ∗ ω)(i) ) is given by:

(X ∗ ω)(i) =
lkernel−1∑
j=0

X(i+ j) · ω(j) (2)

Additionally, define the Proportion of Positive Values (PPV)
as:

PPV =
1

n

∑
i

[(X ∗ ω − b) (i) > 0] (3)

This formulation enables each kernel ω to generate two
features for a given time series X(t) [6].
Building on the foundations of ROCKET, Mini-ROCKET
is an optimized variant designed to reduce computational
complexity and resource usage. Mini-ROCKET achieves this
by employing a significantly reduced number of convolutional
kernels, which are smaller and more standardized than those
used in ROCKET, without compromising on the classification
accuracy. Mini-ROCKET kernels are specifically designed
with a fixed length of 9 units. Moreover, the weight of each
kernel is restricted to one of two possible values. This makes
Mini-ROCKET particularly advantageous for deployment in
embedded systems or devices with limited processing capabil-
ities, such as modern prosthetic limbs [7]. The high accuracy
and efficiency of Mini-ROCKET suggest it is a superior choice
for real-time EMG signal classification in prosthetic control.
Its reduced computational demand enables the integration
into lower-powered wearable devices, potentially increasing
the responsiveness and functionality of prosthetic technology.
Furthermore, the adaptability of Mini-ROCKET allows for
its application across a broader range of biomedical signal
processing tasks, where real-time analysis is crucial [7], [10].

III. MODEL FOR DATASETS

A. NinaPro

To benchmark our machine learning model, the NinaPro
datasets NP4 and NP5 were utilized, which consist of
electromyography (EMG) recordings from ten subjects
performing 52 distinct hand movements. These datasets differ
primarily in their hardware configurations: NP4 employs 12
Cometa electrodes with a sampling rate of 2 kHz, whereas
NP5 utilizes two Thalmic Myo Armbands with a sampling
rate of 200Hz.
The NinaPro dataset is well-structured and labeled, requiring
minimal preprocessing. Key columns include ’repetition’
and ’restimulus,’ which denote the start and end of each
hand movement repetition. To create a balanced dataset,
the resting label is excluded due to its disproportionate
representation. The data is segmented using the repetition
column to form training and validation subsets: repetitions
1, 3, 4, and 6 for training and repetitions 2 and 5 for validation.

Signal processing involved applying a 20Hz lowpass
filter to eliminate unwanted frequencies, followed by the
StandardScaler function to normalize the signal. This
process normalizes the data to have a zero mean and a
variance of one, ensuring uniform contribution from each
feature. Data segmentation was achieved through a sliding
window technique, with each window spanning 400ms and
overlapping subsequent windows by 20ms, resulting in a
three-dimensional array with dimensions 19009 × 400 × 14,
representing the number of samples, window size, and number
of channels, respectively.
For feature extraction, the Mini-ROCKET model was
implemented. It was initialized with 10,000 kernels to
capture the diverse features of the EMG data adequately. The
extracted features were fed into a ridge regression classifier
to determine the optimal regularization parameters and assess
the model’s classification accuracy.
In addition to the standard Mini-ROCKET model, an ensemble
learning approach was employed to enhance classification
accuracy and robustness further. This involved training five
distinct Mini-ROCKET models on the same data, with a
voting mechanism aggregating their predictions. The final
classification outcome was determined by a majority hard
vote, leveraging the diverse perspectives of multiple models
to achieve higher accuracy and better generalization, making
the system more resilient to overfitting and varied data
characteristics.

B. Collected Data

The preprocessing of the EMG data collected via the
Noraxon system began with manual labeling to ensure
accurate identification of muscle activity during specific
hand movements. This process involved reviewing the raw
EMG recordings to assign labels to segments where muscle
activation was evident, corresponding to the initiation of
each hand movement. Artifacts that exceeded a threshold of
1000µV were identified and removed to reduce noise and
potential biases in the subsequent analysis. Gaps between
activations, indicating rest periods or transitions, were also
labeled to facilitate accurate segmentation and to aid in the
removal of non-movement data. The Labels were further
segmented into Repetitions to allow a similar training process
as for the NinaPro dataset. The segmentation was done by
detecting a change in the EMG signal after a two-second
waiting period between each repetition. The following two
figures 2 and 3 showcase the labeling process for movements
and the repetitions, respectively.
Each distinct movement captured in the dataset was assigned
a unique label and repetition, which was crucial for training
the machine learning models to recognize and differentiate
between the various hand gestures. After labeling, the signals
underwent further preprocessing. They were passed through
a bandpass filter with cutoff frequencies set between 20Hz
and 500Hz. This filtering isolated the muscle frequency
components most relevant to the hand movements while
eliminating irrelevant frequencies. To handle the high
sampling rate of 2000Hz the data was downsampled to
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Fig. 2. Visualization of the finished manual label segmentation per movement.
The different segments are the movements for the collected data process.

Fig. 3. This figure highlights the data segmentation of the movement repe-
titions across the movement-labeled data. The linear graphs across the EMG
signal are an error in the graphical illustration of the Python environment.

400Hz. An anti-aliasing filter was applied concurrently with
downsampling to prevent distortion.
Normalization is followed by normalizing features by
removing the mean and scaling to unit variance, helping to
standardize data across a dataset for optimal performance
in machine learning algorithms, also known as the
StandardScaler. This step standardized the data, ensuring that
variations in signal strength due to individual differences in
muscle power or electrode placement did not bias the analysis.
Finally, a sliding window technique was implemented, where
the data was segmented into 1200ms windows with a 50ms
overlap. This segmentation was designed to capture the
EMG signals for analysis. The resultant segments were then
systematically divided into training and testing sets, following
a structured protocol similar to that used in preprocessing
the NinaPro dataset to ensure robust model training and
evaluation.

The data was divided into training and test data with
the same approach as the NinaPro dataset. Repetitions 1,
3, 4, and 6 for training and repetitions 2 and 5 for the test
data set. The Mini-ROCKET model, implemented via the
Python ’tsai’ library [11], was employed to classify various
hand movements. Mini-ROCKET extracts features from the
EMG data for accurate classification. For classification, we
used the RidgeClassifierCV, which is a ridge regression.
A cross-validation was also applied to optimally select the
regularization parameter and alpha and boost the model’s
performance. This cross-validation method allows the

model to tune alpha over a specified range, enhancing its
generalization capabilities on new, unseen data.

IV. RESULTS

The Mini-ROCKET model achieved high classification
accuracies and Area Under the Receiver Operating
Characteristic (AUROC) values on two NinaPro datasets (NP4
and NP5). The Mini-ROCKET model attained an accuracy of
91.34% with an AUROC of 0.99 on NP4 and 82.4% accuracy
with an AUROC of 0.98 on NP5. The weighted F1-Score was
also determined to be 0.811 for the Mini-ROCKET model
and 0.834 for the Voting model. These results highlight the
model’s effectiveness in classifying EMG signals for hand
movement recognition. The following table I shows the
Results of the Mini-ROCKET model and also the results of
the ensemble model.

TABLE I
THE AUROC FOR THE MINI-ROCKET VOTING MODEL COULD NOT BE

CALCULATED DUE TO THE DIFFERENT MODELS INVOLVED.

Model Accuracy time (training set) time (test set)
Mini-Rocket 0.824 12min 34 s 1.44 s

Mini-Rocket Voting 0.853 14min 21 s 2min 30 s

Efficiency was a highlight, with the Mini-ROCKET model
requiring only about 13 minutes for training on NP4 and
slightly less on NP5. Testing times were notably rapid,
supporting the model’s applicability in real-time scenarios,
with response times on the whole test dataset being as low as
1.44 seconds. Compared to other models applied to the same
datasets, such as Random Forest and SVM, which showed
accuracies of 65% and 74% respectively, Mini-ROCKET
clearly outperformed these approaches, showcasing its
efficiency in multi-class classification tasks. This table II
summarizes the results for the NinaPro dataset 4. A confusion

TABLE II
THIS TABLE SUMMARIZES THE RESULTS FOR THE NINAPRO DATASET 4.

Model Accuracy time (training set) time (test set)
Mini-Rocket 0.913 13min 6 s 2min 1 s

Matrix 4 for both datasets was also calculated so a visual
presentation of the model‘s performance can be given. All
52 labels are compared to the predicted labels and the results
can be seen across the diagonal. Furthermore, the confusion
matrix was also printed for the NinaPro 4 dataset and can be
seen in Figure 5.

The evaluation and processing methods applied to the
collected data mirrored those used for the NinaPro dataset.
Preprocessing involved various strategies such as adjusting
filter frequencies, normalization, and scaling techniques.
Optimal results were obtained with a bandpass filter set from
20Hz to 1200Hz, aligning with literature recommendations
[9]. Data normalization involved the StandardScaler method.
Additionally, the size and overlap of the sliding window
significantly influenced model outcomes, with the best
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Fig. 4. Confusion Matrix of the Mini-ROCKET Voting model for the NP5
dataset. The true labels axis states the actual movements, and the predicted
labels refer to the classified labels from the model. The blank space across
the matrix is zero and, for visualization purposes, made white.

performance noted at a window size of 400 ms and an
overlap of 20 ms.

The Mini-ROCKET model utilized 10,000 kernels for
feature extraction from the EMG signals. Due to the dataset’s
extensive size, computational challenges were addressed by
employing memory mapping (mmap) to reduce load on the
system’s memory and converting data into tensors to enhance
GPU compatibility. These adjustments facilitated efficient
computation and feature extraction, critical for training
the linear classifier. The RidgeClassifier, equipped with
cross-validation, was then used to ensure the robustness and
accuracy of the model in mapping features to corresponding
hand movements.
Upon training the Mini-ROCKET model with 8 gigabytes of
training data, it achieved an accuracy of 69.89%, effectively
classifying approximately 70% of the 14 distinct hand
movements. The performance metrics are detailed in the
results table. Notably, the confusion matrix depicted in Figure
6 illustrates the model’s precision in classifying the initial
two movements—the BP and TB contraction. The superior
accuracy for these movements is attributed to the isolated
electrodes that focused exclusively on the upper arm, as
indicated in Table III, which further outlines the metrics used
to evaluate the model’s performance.

Fig. 5. Confusion Matrix of the Mini-ROCKET Voting model for the NP4
dataset. The true labels axis states the actual movements, and the predicted
labels refer to the classified labels from the model. Also, the actual zeros are
replaced with blank spaces for a better overview.

TABLE III
THIS TABLE SUMMARIZES THE RESULTS OF THE COLLECTED DATA.

Model Accuracy time (training set) time (test set)
Mini-Rocket 0.69 16min 36 s 1min 50 s

V. DISCUSSION

The Mini-ROCKET model demonstrated high classification
accuracies on the NinaPro datasets, with 82% and 91%
accuracy for NP4 and NP5, respectively. These results were
supported by AUROC values of 0.98 and 0.99, indicating
excellent model discrimination between different classes.
The model’s robustness was evident from its high predictive
performance across various hand movements, which are
critical for prosthetic applications. The comparison with
existing models highlights the Mini-ROCKET’s superior
performance. Prior models achieved accuracies around 65%to
74%, making Mini-ROCKET’s outcomes particularly notable.
The model showed improved accuracy and managed rapid
processing times, with NP5 testing completed in 14 s for
the entire set, translating to approximately 135ms per
movement—well within the desirable range for real-time
prosthetic control. A paper with similar but different Mini-
ROCKET model strategy included cosine similarity and
dimensionality reduction methods to push the accuracy of



PROCEEDINGS OF THE 1st MCI MEDICAL TECHNOLOGIES MASTER’S CONFERENCE, INNSBRUCK, SEPTEMBER 2024 6

Fig. 6. Confusion Matrix of the Mini-ROCKET model for the created dataset.
The true labels axis states the actual movements, and the predicted labels refer
to the classified labels from the model. Also, the actual zeros are replaced
with blank spaces for a better overview.

the Mini-ROCKET model even further. Their results were
above 94% and are depicted in [12]. Further, the test times
and AUROC values suggest that Mini-ROCKET effectively
handles multi-class classification problems, even in complex
settings like hand movement classification from EMG data,
which involves distinct motion types.

The Mini-ROCKET model yielded an accuracy of 69% and
an AUROC of 0.92 on the collected data, indicating a solid
capability to differentiate between class features despite some
challenges in accurately assigning these features to specific
hand movement labels. The model excelled at classifying
upper arm movements, particularly contractions of the Biceps
Brachii and Triceps Brachii, with minimal misclassification
due to targeted electrode placement. However, the model’s
performance was less effective for other hand movements,
with widespread misclassification suggesting areas for
model refinement. Several factors contributed to the lower
performance compared to the NinaPro datasets:

• Electrode Configuration: The setup involved fewer elec-
trodes (eight in total, with only six dedicated to hand
movements) than the twelve and sixteen used in the Ni-
naPro datasets. This reduced the coverage and resolution
of the EMG signals. The different subjects’ forearms’
radii differed greatly, so the same area covered by the
electrodes differed.

• Skin Preparation: Unlike the preparation in NinaPro stud-
ies, the electrode sites in this study were not uniformly
prepared, potentially affecting signal clarity and consis-
tency.

• The data was initially sampled at 2000Hz but had to
be downsampled to 400Hz due to hardware constraints,
compromising data quality. Additionally, the data was
tested on external servers with more computational re-
sources. However, after multiple tests, it crashed multiple
times due to an integer overflow in LAPACK (Linear
Algebra Package), meaning the dataset was too large for
the algorithm’s underlying libraries to handle.

These factors probably contribute to the reduced classification
outcome, which results in lower overall accuracy. Future work
should focus on standardizing skin preparation and electrode
placement, considering enough electrodes to cover the forearm
and reduce noise in the signal.

VI. CONCLUSION

This paper successfully achieved its goals of training
and evaluating a machine learning model on EMG data
from the NinaPro dataset and ten subjects using Noraxon
Inc. electrodes. Utilizing the Mini-ROCKET architecture,
the study demonstrated effective classification of hand
movements, showcasing the potential of machine learning to
enhance prosthetic control and human-machine interaction.

Future directions include improving model accuracy,
enhancing real-time processing, and expanding applications
beyond hand movement classification to other biomechanical
signals. Additionally, the model can be embedded in a
microcontroller and improve classification processes for
wearable robots and prostheses alike. These advancements
could further leverage EMG technology in medical and
rehabilitation devices.
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